fastavroとjqでAVRO形式のファイルからデータを取得しよう

     - ビッグデータ, 未分類, 開発ツール  


AVRO形式のファイルを取り扱いたい

AVROとはApacheプロジェクトのひとつとして開発されているデータ交換形式です。 コンパクトなバイナリで高速なシリアライズ・デシリアライズが行えるため、サーバーログなどに利用されています。

弊社内での一部システムのログデータにも利用されているのですが、専用のバイナリ形式であるため、テキストエディタで内容を確認することができません。そこで今回はPythonを用いてAVRO形式のデータを変換して内容を確認する方法を紹介します。

fastavroのインストール

Pythonからavroを取り扱うためには、fastavroをインストールする必要があります。仮想環境を作成して、fastavroをインストールします。

※今回はPython 3.6.0環境で作業を行っています。

[code lang=text]
$ mkdir avro
$ python3 -m venv avro/
$ cd avro/
$ . bin/activate
(avro) $ pip3 install fastavro
[/code]

fastavroを活用してjson形式に変換

以下のプログラムでJSON形式として文字列を出力させます。

[code lang=python]
import sys
import fastavro as avro
import json

if (len(sys.argv) != 2):
sys.stderr.write('usage: python test.py {filename}n')
exit(2)

with open(sys.argv[1], 'rb') as fo:
for recode in avro.reader(fo):
print(json.dumps(recode), flush=True)

[/code]

利用法

[code lang=text]
$ python3 test.py testlog.avro > out.json
[/code]

jqをもちいてjson形式のファイルから値を取得

以上までで avro 形式のファイルを json 形式に変換できました。JSON形式のファイルは jq コマンドを用いることで特定の値を取得することができます。各環境にあわせて jq コマンドをインストールします。

[code lang=text]
# mac では homebrew でインストールする
$ brew install jq
[/code]

以下のような構造のログから jq コマンドを用いて各ログにあるipアドレスを取得します。

[code lang=text]
{"request": {"datetime": "2017-02-03 00:00:00", "ip": "10.0.xxx.xxx", ……
{"request": {"datetime": "2017-02-03 00:00:01", "ip": "10.0.xxx.xxx", ……
[/code]

-rをオプションを用いると、文字列のクォーテーションを除去してくれます。

[code lang=text]
$ jq -r '.request.ip' out.json
10.0.1.xxx
10.0.2.xxx
10.0.1.xxx
10.0.2.xxx
[/code]

パイプラインを繋げてソートと重複除去を行うことでIPアドレスの一覧を作成します

[code lang=text]
$ jq -r '.request.ip' out.json | sort | uniq
10.0.1.xxx
10.0.2.xxx
[/code]

まとめ

fastavroとjqでAVRO形式のファイルからデータを取得する方法を紹介しました。fastavroを用いてAVROのJSON化を行うことでTreasureDataに格納したり、jq コマンドから取り扱うことが可能となります。AVRO形式のログファイルを扱っている場合には今回紹介した方法をためしてみてはいかがでしょうか。


DACエンジニア採用情報

  関連記事

D3.jsとその活用事例について

D3.jsとは? D3とは「Data Driven Document」の略で、データに基づいてドキュメントを操作するための JavaScript ライブラリです。 ご存知の方も多いと思いますが、ちょっとだけD3.jsの基本的な使い方、そして弊社プラットフォームでの利用についてご紹介したいと思います。 …

ディープラーニングで「顔が似ているAKB48のメンバーを教えてくれるbot」を構築

概要 こんにちは、システム開発部の中村です。 今回は、Facebook Messenger APIを利用して、 画像をアップロードすると、似ているAKB48のメンバーを教えてくれるbotを実装しました。 尚、ディープラーニングやTensorFlowそのものの解説というより、 「エンジンとしてディープ …

Charlesを使ってスマホアプリ(iOS)のUAを調べてみた

はじめに ここ最近のスマホアプリには、Webブラウザの機能を実装したものが少なくありません。 (“スマホアプリ内で立ち上がるブラウザ「アプリ内ブラウザ」”の機能は「WebView」というコンポーネントを用いて実装されています。) 昨今のWebサイト、サービス運営に於いて、「通 …

ゼロからAngularでSPAを作ってみた(2) デプロイ・公開編

前回のおさらいと今回やること 前回(はじめてのアプリ編)では、Angular で簡単なチャットアプリを作るところまでやりました。ディレクトリ構成については説明できていなかったのですが、次のようになっています。(主なディレクトリとファイルのみ抜粋) + dist (ビルド・コンパイル後のファイルのディ …

全ファイルを検索
意外と知らないかも? Chrome DevTools の機能10選

みんな使っている Chrome DevTools。 Web開発やトラブルシューティングには必須ですが、便利な機能を知らないで使っている人がいたり、Web で使い方を調べても古い情報だったりすることがあるので、部内で Chrome DevTools についての勉強会を開催しました。 ここでは、その中か …

no image
Treasure Dataで長期間の集計

プラットフォーム・ワン T氏です。プラットフォーム・ワンでは、DSPのMarketOneとSSPのYIELD ONE提供しています。 MarketOneやYIELD ONEのログを調査する場合にTreasure Dataを使うことがあります。Treasure Dataでは大量のデータに対してHive …

トレジャーデータの新機能「Data Connector」でクライアントレスなビッグデータ連携を実現する

トレジャーデータは、スキーマレスな大量のデータ(ビッグデータ)をパブリッククラウド上に保管して集計や抽出をするためのサービスなのですが、他システムからの連携データをトレジャーデータのテーブルに格納するまでが一苦労でした。 他システムとの外部連携を行う場合、一般的にローカルサーバー内のストレージを外部 …

【電子工作入門】Arduino + Processingでアラート監視してみた

こんにちは、プラットフォームワンのyamakenです。普段はフロントエンド中心にDSP周りの開発をやっています。現在新卒2年目です。 広告会社のエンジニアブログということで皆さんビッグデータやインフラなどためになりそうな記事をあげていらっしゃいますが、今回は少し趣向を変えて電子工作チックな内容をお届 …

巨大データベースのスケールアップと引越作業

はじめに ビッグデータ解析部でオーディエンスデータ解析基盤の開発、運用を担当している Mike です。 弊社ではインターネット広告配信ログをはじめとする「ビッグデータ」と呼ぶにふさわしいデータボリュームを扱うオーディエンスデータ解析基盤を構築しています。今秋、そのうちの1構成要素である、データサイズ …

【クラウド初心者向け】Google Cloud Platform(GCP)でWebサイトを公開してみよう!

はじめに みなさんこんにちは、プロダクト開発本部の亀梨です。 普段はXmediaOneというメディアプランニング・広告運用管理・トラッキング・マーケティング分析を行う 統合プラットフォームの開発を担当しています。 背景 わたくしは最近プライベートで開発したWebサービスをインターネット上に公開しまし …