PyStanによるはじめてのマルコフ連鎖モンテカルロ法


はじめに

こんにちは。システム開発部の中村です。

社内で行っている『データ解析のための統計モデリング入門』(所謂緑本)の輪読会に参加した所、
大変わかりやすい本だったものの、Macユーザには悲しい事に実装サンプルがWinBUGSだったため、
9章の一般化線形モデルのベイズ推定によるアプローチをPython + STANで実装しました。

概要

ざっくりと、以下のステップに沿って実装しました。
1. 特定のパラメータに基いて確率分布からダミーデータを生成
2. 予測モデルを設定
3. ダミーデータと予測モデルから、データを生成したパラメータ(の事後分布)をMCMCで推定して答え合わせ

具体的には、とある植物の体サイズが(3.0~7.0の0.1刻みの離散値をとる)を説明変数として、
ポアソン分布に従う種子数(0以上の整数)の確率分布を推定します。

利用ツール、ライブラリ

推定方法

MCMC

MCMC法はMarcov Chain Monte Carlo methodの略です。
日本語だとマルコフ連鎖モンテカルロ法とか言います。
マルコフ連鎖モンテカルロ法とは、モンテカルロ法を使ったマルコフ連鎖です。
…トートロジーになってしまったため、もう少し説明します。

マルコフ連鎖

ある状態が直前の状態にのみ依存するという性質の事をマルコフ性と言います。
マルコフ連鎖は、この直前の状態にのみ依存する状態が連鎖的に起こっている確率モデルです。
エンジニア的には、オートマトンの一種と考えるとわかりやすいと思います。

モンテカルロ法

モンテカルロ法は、乱数を用いた数値計算やシミュレーション一般の呼称です。

つまり、マルコフ連鎖モンテカルロ法とは乱数を使ってマルコフ連鎖を発生させる手法であり、
ここでは特に、マルコフ連鎖の持つ性質を用いて確率分布(パラメータの事後分布)を生成するアルゴリズムの事を指しています。

ベイズ推定 × MCMC

ベイズ推定のフレームワーク(事後分布∝尤度×事前分布)と、尤度に比例した確率分布をサンプリングするMCMCを組み合わせる事で、
解析的に解けないようなモデルであっても、数式で表すことさえ出来れば事後分布を推定する事が出来ます。

実装

一般化線形モデルやMCMCを詳細に解説すると大変長くなりそうなので、実装に入ります。
『データ解析のための統計モデリング入門――一般化線形モデル・階層ベイズモデル・MCMC (確率と情報の科学)』が、とにかくわかりやすいです。

訓練データの生成

体サイズは3.0 ~ 7.0、
個体毎の平均 μ = 1.5 + 0.1 * 体サイズのポアソン分布から発生させています。

def generate(n):
  for i in range(n):
    x = round(random.random() * 4 + 3, 1) # 3.0 ~ 7.0までの乱数
    mu = math.exp(1.5 + 0.1*x)
    print (x, np.random.poisson(mu))

“体サイズ” “種子数” です。

6.1 11
5.9 6
4.1 7
5.1 6
6.8 13
5.6 7
5.0 7
5.4 16
5.4 6

STAN

mcmc.stan

data {
  int<lower=1> N;
  vector[N] x;
  int<lower=0> y[N];
}
parameters {
  real beta1;
  real beta2;
}
model {
  for (i in 1:N) {
    y[i] ~ poisson(exp(beta1 + beta2 * x[i])); // ポアソン分布×対数リンク関数
  }
  beta1 ~ normal(0, 1000); // 平均0,分散1000の正規分布≒無情報事前分布
  beta2 ~ normal(0, 1000); // 平均0,分散1000の正規分布≒無情報事前分布
}

読み方

data
stanのプログラムに渡すデータです。
{データ型} {変数名};の形式で宣言します。
Pythonからここに書いた変数名を指定してデータを渡します。

parameters
こちらは、stanに記述するモデルで使用する変数です。
今回はポアソン分布の対数リンク関数の切片β1と係数β2をSTANの内部で、
無情報事前分布(を近似した分散の大きい正規分布)から発生させています。

model
予測モデルです。演算子‘~’は、左項が右項の確率分布に従う、という意味合いです。
ここでは、種子数yは、exp(β1 + β2x)をリンク関数(つまり対数リンク関数)とするポアソン分布に従うとしています。

Python

import numpy as np
import pystan
import matplotlib.pyplot as plt

data = np.loadtxt('./data.txt', delimiter=' ')

# Stan Interfaceに渡すデータ生成
x = data[:,0] # numpyの記法、データの1列目を切り取ってきます
y = data[:,1].astype(np.int) # ポアソン分布の目的変数なので、整数値に変換
N = data.shape[0] # データ数

stan_data = {'N': N, 'x': x, 'y': y}

fit = pystan.stan(file='./mcmc.stan',\
	data=stan_data, iter=10000, chains=3, thin=10)
    # iter = 各サンプリングの回数
    # chain = iterで指定したサンプリングをnセット繰り返す
    # thin = サンプルの間引き数

実行結果

うまく行くとこんな感じのログが出て来ます。
STAN自体はC++で実装されているので、コンパイルが走ってます。

INFO:pystan:COMPILING THE C++ CODE FOR MODEL ~ NOW.
Chain 1, Iteration:    1 / 10000 [  0%]  (Warmup)
Chain 0, Iteration:    1 / 10000 [  0%]  (Warmup)
Chain 2, Iteration:    1 / 10000 [  0%]  (Warmup)
Chain 1, Iteration: 1000 / 10000 [ 10%]  (Warmup)
Chain 2, Iteration: 1000 / 10000 [ 10%]  (Warmup)
Chain 0, Iteration: 1000 / 10000 [ 10%]  (Warmup)
...
Chain 0, Iteration: 8000 / 10000 [ 80%]  (Sampling)
Chain 2, Iteration: 8000 / 10000 [ 80%]  (Sampling)
Chain 1, Iteration: 9000 / 10000 [ 90%]  (Sampling)
Chain 0, Iteration: 9000 / 10000 [ 90%]  (Sampling)
Chain 2, Iteration: 9000 / 10000 [ 90%]  (Sampling)
Chain 1, Iteration: 10000 / 10000 [100%]  (Sampling)# 
...
#  Elapsed Time: 9.51488 seconds (Warm-up)
#                10.7133 seconds (Sampling)
#                20.2282 seconds (Total)
# 

グラフ

mcmc9

統計値

summary

fit.summary()メソッドを実行すると下記のように出力されます。

Inference for Stan model: anon_model_381b30a63720cfb3906aa9ce3e051d13.
3 chains, each with iter=10000; warmup=5000; thin=10; 
post-warmup draws per chain=500, total post-warmup draws=1500.

        mean se_mean     sd   2.5%    25%    50%    75%  97.5%  n_eff   Rhat
beta1   1.41  2.4e-3   0.05   1.31   1.38   1.41   1.45   1.52    481    1.0
beta2   0.12  4.6e-4   0.01    0.1   0.11   0.12   0.13   0.14    478    1.0
lp__  7821.4    0.04   0.97 7818.8 7821.1 7821.7 7822.1 7822.4    496    1.0

Samples were drawn using NUTS(diag_e) at Tue Feb  9 23:31:02 2016.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at 
convergence, Rhat=1).

まずβ1について見ると、サンプルの平均が1.41、95%の確率で1.31~1.52の範囲にある事を示しています。
(ベイズ的には信用区間と呼ぶようです。)

今回分布の山が一つだけなので代表値を平均で見てしまいますが、
β1(1.5)が1.41、β2(0.1)が0.12と大きく外れてはいない、数値を推定出来ています。

Rhat
Pythonからstanのコードをコールする際、chainパラメータでサンプリングを3回繰返しました。
MCMCによるパラメータの事後分布推定において、パラメータの初期値は適当に決めます。
モデルによっては、初期値によって推定される確率分布が異なってしまう事があるため、
サンプリングを複数回繰り返して、セット間のバラツキを数量化したRhatにより、確率分布が収束するかどうか確認します。
大体1.1以下ならOKとされているようですが、今回はbeta1, beta2共にそれ以下なので問題ないと判断できます。

参考書籍

実装紹介が中心のため、STANをコールした際のthinなど各引数の意味合いや、
なぜサンプリングの前半をWarmupに利用しているのか、
また、そもそもMCMCは手法の総称であり具体的なアルゴリズムはどうなっているのか…等々の解説を相当端折りました。
詳しく知りたい方は下記を読んで頂くと良いと思います。

データ解析のための統計モデリング入門――一般化線形モデル・階層ベイズモデル・MCMC (確率と情報の科学)

おまけ

学生エンジニアインターン & エンジニア募集中です。

最先端のアドテクノロジー領域でクライアントのニーズに答えるスペシャリスト!サーバー、フロント、バックエンドのアドテクエンジニアを大募集!

ネット広告業界のプロを目指したい、学生エンジニアインターンWanted!


DACエンジニア採用情報

  関連記事

data-tenki
気象予報士とビッグデータ解析の意外な関係

DACから気象予報士が誕生しました ビッグデータ解析部のMikeです。 2015年1月の気象予報士試験に合格し、めでたく4月からアドテク業界ただ一人(本当?)の気象予報士となりました 。 そんなわけで、今回は気象予報士とビッグデータ解析の関係についてお話したいと思います。 なぜ気象予報士を目指したか …

l_077
fastavroとjqでAVRO形式のファイルからデータを取得しよう

AVRO形式のファイルを取り扱いたい AVROとはApacheプロジェクトのひとつとして開発されているデータ交換形式です。 コンパクトなバイナリで高速なシリアライズ・デシリアライズが行えるため、サーバーログなどに利用されています。 弊社内での一部システムのログデータにも利用されているのですが、専用の …

rails
初心者がRailsで開発 – deviseでユーザー認証設定 -

こんにちは、2年目のYukaです。 開発部所属でありながら実は、、 実際に自分で手を動かして開発する機会がなかなかありませんでした。。 しかしついに、、、 開発初心者がRailsでWebアプリの開発に挑戦します!! 今回のゴールは社内でも使用しているGoogleアカウントで簡単にログインができるよう …

curry
【小ネタ】JSで要素の組み合わせを列挙する

下記のような、キーの数や要素数が可変のデータの組み合わせを、列挙するjavascriptコードです。 pythonにはitertoolなどの順列・組み合わせ計算を行う定番ライブラリがあるようです。 やっている事ですが、イメージとしては組み合わせを数列に置き換えています。 1桁目が2進数、3桁目が3進 …

no image
Polymer on Rails

Web Componentsをご存知だろうか。これが普及すればWebの開発は画期的に変わるだろう。 説明すると長くなるので、LIGさんのにその辺はお任せして。(この記事読んでください。) 簡単に言えば、下記にあるような新たに提案されたブラウザ向けAPIの総称。 Custom Elements, 説明 …

PPG_anteli-kunatokei_TP_V
Treasure Dataで大規模なマスタデータを扱う際にはtimeカラムインデックスを活用しよう

DACではTreasure Dataを利用して各種データの蓄積や集計を行っています。Treasure Dataは時系列のデータを扱うのに特にすぐれたアーキテクチャなのですが、セグメントIDとユーザーIDの組み合わせといった大量のマスタデータを利用した計算にも利用することもできます。そのような場合にt …

no image
gulp.jsで広告タグの開発環境を整える

SEOの観点から、サイト表示速度の高速化のためJavaScriptファイルから不用な空白や改行、 コメントを除去したりやローカル変数名を短縮するminifyが奨励されていますが、 これはタスクランナーのgulp.jsとプラグインを使って自動化する事が可能です。 ※gulpの基本的な使い方については下 …

6914441342_605f947885
Treasure Dataの新機能(Data Tank)をAudienceOneのレポート機能で利用した話

Data Tankとは? Treasure Dataの新機能でTreasure Dataのプラットフォーム上に構築されたデータマートです。 Tableau等のBIツールとの接続を想定されており、AWSでいうところのRedshift的なものだと考えるとわかりやすいかと。 Data TankはPostg …

Screen Shot 2014-11-17 at 9.33.19 PM
Amazon ElastiCache/Redisのパフォーマンス確認

はじめに こんにちは、AudienceOne開発部です。AudienceOne開発部ではいわゆるビッグデータと呼ばれる大量のデータをアドホックあるいは定常的に日々ETLだの集合演算だのをする一方で、様々な大規模データ処理ソリューションを継続的に検証しております。 本記事は、その中でもユーザが保持して …

toadstool
【Hivemall入門】RandomForestで毒キノコ推定モデルを作る

こんにちは。俺やで。 今回も前回から間が空いてしましたが、ビッグデータに対応したHiveで使える機械学習ライブラリ、 Hivemallの使い方について、書かせていただければと思います。 なお今回はQiitaのTreasure Data / Advent Calender 2015の12/3日分として …