Treasure Dataの新機能(Data Tank)をAudienceOneのレポート機能で利用した話


Data Tankとは?

Treasure Dataの新機能でTreasure Dataのプラットフォーム上に構築されたデータマートです。
Tableau等のBIツールとの接続を想定されており、AWSでいうところのRedshift的なものだと考えるとわかりやすいかと。
Data TankはPostgresql9.4をベースに拡張にされており、ストアドや9.1から追加されたForeign Data Wrapperも利用可能になっています。

AudienceOneについて

AudienceOneは、いわゆるDMP(Data Management Platform)で、どちらかというと、Public DMPに分類されています。
基本的な機能としては、Webデータの収集や分析、セグメンテーション、外部データ(3rdPartyデータ)との掛け合わせ分析、また、セグメンテーションしたデータをDSPなどの配信システムと連携する、といった機能を備えています。
詳しくはこちらを御覧ください

Data Tankの利用について

AudienceOneでは10/8のアップデートで複数のセグメントの重複率の分析を行うレポートでData Tankを活用しました。
最初に実際のレポートUIを見たほうがわかりやすいと思うので説明すると、
以下のようにベン図を用いて任意のセグメントについての重複率や重複ユーザ数の分析を行うことができます。
データについては大きいものでも数秒で出力することができます。

aone_report_1008

このレポートに使用しているデータは実に単純で、各セグメントA,B,Cに対して集合演算(A∩B、A∩C、B∩C、A∩B∩C)を行っているだけです。

ロジック自体はとても単純なんですが、AudienceOneには全体で4億以上のCookieデータがあり、10万を超えるセグメントがあります。
ユーザ x セグメントで直近1ヶ月を対象にすると、約120億レコードにもなります。
なので、事前にすべて組み合わせの集計をやろうと思ってもなかなか大変です。というより無理でした。。
とはいえ、非同期でやってしまうとスピーディーな分析ができず、PDCAサイクルを高速でまわすことができなくなってしまいます。

アドホックにセグメント間の重複分析できるようにするためにData Tankを利用しました。

システム構成としてはざっくりですが、以下のようになっており、Treasure Data上にあるログデータやAudienceOneで推計しているデモグラフィックデータなどをまとめてHiveQLで中間集計を行い、その結果をData Tankに出力しています。
そしてAudienceOneのコンソールから直接Data Tankに接続してデータを取得しています。

aone_datatank

データ量としては、HiveQLで処理するデータが上記で書いた通り約120億レコードで中間集計を行った結果が1,000万弱のレコード数となっています。
HiveQLの実行からData Tankに入れるまでの処理時間はだいたい1~2時間くらいです。

中間テーブルのデータの持ち方が一番工夫したポイントなので、具体的なテーブルの構成についてはご紹介できませんが、当初はRedshiftでの構築を検討していました。
ところが、ご存知のとおりRedshiftでは使える関数が限られており事前に考えた方法での実現が難しく、ちょうど困っていたところでData Tankを紹介いただいて、今回採用に至りました。

パフォーマンスについては、Data Tankの採用を決める前にちょっとだけやってみましたが、Redshiftと同等、ないしはData Tankのほうが早かったです。
もちろん、データ量やデータの内容、クエリによって全然異なると思いますが。
今回の採用した一番のポイントはPostgresqlの関数がすべて使える、という点だったのでまだちゃんと検証できていないというのが本音です。
個人的にはData Tankを利用することでTreasure Dataのプラットフォームですべて完結できるってのもいいなと思いました。

今後について

現状、Treasure Data+Redshift+Tableauという構成で構築しているものもあるので、
Treasure Data+Data Tank+Tableauとの比較検証もしてみたいと思います。
また、今後も継続してAudienceOneのレポート機能を拡充していくので、うまく活用したいと思っています。
Foreign Data Wrapperも今回利用しなかったので、マスタデータとの突合など機会があれば利用したいと思います。

おまけ

弊社ではエンジニアの募集もしておりますが、学生エンジニアインターンの募集もはじめました。
興味ある方がいればぜひ!
ネット広告業界のプロを目指したい、学生エンジニアインターンWanted!


DACエンジニア採用情報

  関連記事

tf
ディープラーニングで「顔が似ているAKB48のメンバーを教えてくれるbot」を構築

概要 こんにちは、システム開発部の中村です。 今回は、Facebook Messenger APIを利用して、 画像をアップロードすると、似ているAKB48のメンバーを教えてくれるbotを実装しました。 尚、ディープラーニングやTensorFlowそのものの解説というより、 「エンジンとしてディープ …

Chrome
アドブロッカーに対抗してアドチェッカーを作ってみた

iOS9のSafariでコンテンツブロック機能が登場し、サイト上の広告を非表示にするアドブロックの存在が世に広まりました。 これを機にCrystalを始めとする数々のアドブロッカーアプリが登場しています。 PCブラウザでもAdblock Plusを始め、ブラウザの拡張機能で広告を非表示にして表示速度 …

heatmap
巨大データベースのスケールアップと引越作業

はじめに ビッグデータ解析部でオーディエンスデータ解析基盤の開発、運用を担当している Mike です。 弊社ではインターネット広告配信ログをはじめとする「ビッグデータ」と呼ぶにふさわしいデータボリュームを扱うオーディエンスデータ解析基盤を構築しています。今秋、そのうちの1構成要素である、データサイズ …

new-york-city-828776_1280
ネイティブ広告と記事広告の違いってなに?!

こんにちは、プラットフォーム・ワンの新卒1年目Yukaです!! ここ数年よく耳にし、さまざまな媒体で目にするネイティブ広告。 しかし、今までの記事広告といったいなにが違うのー?!?!?! ということで調べてみました。 ネイティブ広告(Native Ads) デザイン、内容、フォーマットが、媒体社が編 …

IMG_4673
Ad Tech Conference~海外アドテク系カンファレンスに行ってきた②~

はい、テクノロジー戦略部の田畑です。 アドテク系イベントに行ってきた②ということで、前回書ききれなかったところを書きます。   ~前回のおさらい~ 1.11月にNYのアドテク系イベント3つに行ってみた。 2.Fraud、Viewability、Programatic Directがキーワー …

Hivemall_Minhash_pic1_thum
HivemallでMinhash!〜似てる記事を探し出そう。〜

こんにちは。俺やで。 前回の投稿に続き(間が空きましたが)、 ビッグデータに対応したHiveで使える機械学習ライブラリ、 「Hivemall」の使い方、第2弾となります。 今回はMinhashという手法について書きたいと思います。 ※前回 【超入門】Hivemallで機械学習 〜Treasure D …

logomono-tableau-software-mono
Tableau 9.2で郵便番号の特性を地図で可視化してみる

Tableau 9.2から郵便番号地図が表示可能に 弊社ではデータ分析ツールのTableauを利用しています。オーディエンスデータの重複を分析したり、デモグラフィック属性を表示したりするなどデータの可視化に役立ちますTableauでは9.2から日本の郵便番号を用いて地図を可視化できるようになりました …

gtm
【タグマネジメント】GoogleTagManagerでイベントリスナーを使う

タグマネジメントとは タグマネジメントとは、広告効果測定ツールや、サイト解析ツールなどで利用している『HTMLタグ』の管理を行うことをいいます。 タグマネジメントツールでは、Webサイトの全ページに各タグマネジメントツールが発行する1つのタグを設置するだけで、あらゆるHTMLタグを管理画面上で登録す …

logomono-tableau-software-mono
Tableauを利用してMySQLとRedshiftのクロスDBジョインを実現する

はじめに RedshiftやTreasureDataなどのデータマート用のDBにはID単位の解析結果が格納され、ローカルのMySQLにはIDに紐づいた名称マスタが管理されている構成の場合、データマートのクロス集計結果に対してIDに紐づいた名称を付与したいことがあります。 データマート用に用意したDB …

【超入門】Hivemallで機械学習_サムネイル
【超入門】Hivemallで機械学習 〜Treasure Dataでロジスティック回帰編〜

こんにちは。俺やで。 ビッグデータとかデータサイエンティストとかいう言葉が未だブームですね。 (「データサイエンティスト」は下火か。) ビッグデータ扱えるエンジニアも、 統計解析ができるアナリストも、 どっちもできるスーパーマンも世の中にはたくさんいますが、 ビッグデータも統計解析も扱えるインフラは …