Treasure Dataの新機能(Data Tank)をAudienceOneのレポート機能で利用した話


Data Tankとは?

Treasure Dataの新機能でTreasure Dataのプラットフォーム上に構築されたデータマートです。
Tableau等のBIツールとの接続を想定されており、AWSでいうところのRedshift的なものだと考えるとわかりやすいかと。
Data TankはPostgresql9.4をベースに拡張にされており、ストアドや9.1から追加されたForeign Data Wrapperも利用可能になっています。

AudienceOneについて

AudienceOneは、いわゆるDMP(Data Management Platform)で、どちらかというと、Public DMPに分類されています。
基本的な機能としては、Webデータの収集や分析、セグメンテーション、外部データ(3rdPartyデータ)との掛け合わせ分析、また、セグメンテーションしたデータをDSPなどの配信システムと連携する、といった機能を備えています。
詳しくはこちらを御覧ください

Data Tankの利用について

AudienceOneでは10/8のアップデートで複数のセグメントの重複率の分析を行うレポートでData Tankを活用しました。
最初に実際のレポートUIを見たほうがわかりやすいと思うので説明すると、
以下のようにベン図を用いて任意のセグメントについての重複率や重複ユーザ数の分析を行うことができます。
データについては大きいものでも数秒で出力することができます。

aone_report_1008

このレポートに使用しているデータは実に単純で、各セグメントA,B,Cに対して集合演算(A∩B、A∩C、B∩C、A∩B∩C)を行っているだけです。

ロジック自体はとても単純なんですが、AudienceOneには全体で4億以上のCookieデータがあり、10万を超えるセグメントがあります。
ユーザ x セグメントで直近1ヶ月を対象にすると、約120億レコードにもなります。
なので、事前にすべて組み合わせの集計をやろうと思ってもなかなか大変です。というより無理でした。。
とはいえ、非同期でやってしまうとスピーディーな分析ができず、PDCAサイクルを高速でまわすことができなくなってしまいます。

アドホックにセグメント間の重複分析できるようにするためにData Tankを利用しました。

システム構成としてはざっくりですが、以下のようになっており、Treasure Data上にあるログデータやAudienceOneで推計しているデモグラフィックデータなどをまとめてHiveQLで中間集計を行い、その結果をData Tankに出力しています。
そしてAudienceOneのコンソールから直接Data Tankに接続してデータを取得しています。

aone_datatank

データ量としては、HiveQLで処理するデータが上記で書いた通り約120億レコードで中間集計を行った結果が1,000万弱のレコード数となっています。
HiveQLの実行からData Tankに入れるまでの処理時間はだいたい1~2時間くらいです。

中間テーブルのデータの持ち方が一番工夫したポイントなので、具体的なテーブルの構成についてはご紹介できませんが、当初はRedshiftでの構築を検討していました。
ところが、ご存知のとおりRedshiftでは使える関数が限られており事前に考えた方法での実現が難しく、ちょうど困っていたところでData Tankを紹介いただいて、今回採用に至りました。

パフォーマンスについては、Data Tankの採用を決める前にちょっとだけやってみましたが、Redshiftと同等、ないしはData Tankのほうが早かったです。
もちろん、データ量やデータの内容、クエリによって全然異なると思いますが。
今回の採用した一番のポイントはPostgresqlの関数がすべて使える、という点だったのでまだちゃんと検証できていないというのが本音です。
個人的にはData Tankを利用することでTreasure Dataのプラットフォームですべて完結できるってのもいいなと思いました。

今後について

現状、Treasure Data+Redshift+Tableauという構成で構築しているものもあるので、
Treasure Data+Data Tank+Tableauとの比較検証もしてみたいと思います。
また、今後も継続してAudienceOneのレポート機能を拡充していくので、うまく活用したいと思っています。
Foreign Data Wrapperも今回利用しなかったので、マスタデータとの突合など機会があれば利用したいと思います。

おまけ

弊社ではエンジニアの募集もしておりますが、学生エンジニアインターンの募集もはじめました。
興味ある方がいればぜひ!
ネット広告業界のプロを目指したい、学生エンジニアインターンWanted!


DACエンジニア採用情報

  関連記事

Google BigQuery / Tableauを使ってみた

TableauからGoogle BigQueryへ接続してみました。 弊社で利用しているTreasureDataからデータ出力してBigQueryへロード、Tableauから接続まで実際に行った手順について記載します。 TreasureDataからAmazonS3へデータ出力 まず、データが蓄積され …

GoogleAppsScriptとTreasureData REST APIを使ってサーバレスにTwitterのデータを取得

またまたTreasureDataネタです。 ただ、今回はクエリ系のネタではなく、GoogleAppsScriptとTreasureDataのREST APIを使ってTwitterのデータをTreasureDataに入れてみたので、その方法を紹介したいと思います。 はじめに ログデータだけではなく、公 …

【Hivemall入門】RandomForestで毒キノコ推定モデルを作る

こんにちは。俺やで。 今回も前回から間が空いてしましたが、ビッグデータに対応したHiveで使える機械学習ライブラリ、 Hivemallの使い方について、書かせていただければと思います。 なお今回はQiitaのTreasure Data / Advent Calender 2015の12/3日分として …

オトナの常識、消費者プライバシー保護(前編)

どうも、広告技術研究室のダーハラです。    何やってる人? 広告技術研究室の業務は多岐に渡るのですが、僕の仕事は海外のアドテクノロジーの動向や関連する技術環境の変化を調べて、経営陣や開発部隊にフィードバックするといったことを主な業務としています。 とてもやり甲斐のある仕事なのですが、仕事 …

HivemallでMinhash!〜似てる記事を探し出そう。〜

こんにちは。俺やで。 前回の投稿に続き(間が空きましたが)、 ビッグデータに対応したHiveで使える機械学習ライブラリ、 「Hivemall」の使い方、第2弾となります。 今回はMinhashという手法について書きたいと思います。 ※前回 【超入門】Hivemallで機械学習 〜Treasure D …

アドブロッカーに対抗してアドチェッカーを作ってみた

iOS9のSafariでコンテンツブロック機能が登場し、サイト上の広告を非表示にするアドブロックの存在が世に広まりました。 これを機にCrystalを始めとする数々のアドブロッカーアプリが登場しています。 PCブラウザでもAdblock Plusを始め、ブラウザの拡張機能で広告を非表示にして表示速度 …

video.jsを使ったインバナー動画広告のHTMLタグを作ってみた

こんにちは、プラットフォームワンのyamakenです。久しぶりの投稿です。 今回は、 インバナー動画広告 のHTMLタグを作ってみます。 「今年は動画広告元年!」という声が私の入社以来毎年聞こえており、私の担当するMarketOneDSPでも年始にインストリーム動画RTB対応をリリースするなど、市場 …

【超入門】Hivemallで機械学習 〜Treasure Dataでロジスティック回帰編〜

こんにちは。俺やで。 ビッグデータとかデータサイエンティストとかいう言葉が未だブームですね。 (「データサイエンティスト」は下火か。) ビッグデータ扱えるエンジニアも、 統計解析ができるアナリストも、 どっちもできるスーパーマンも世の中にはたくさんいますが、 ビッグデータも統計解析も扱えるインフラは …

Ad Tech Conference~海外アドテク系カンファレンスに行ってきた~

こんにちは、田畑です。   前回のエントリから早一か月、どのように書こうかなぁと考えているうちに時間が経ってしまいました。前回はそもそも自分の部署が何をしているのかといったところを書いたので、今回は実際に情報収集の場として利用している各種カンファレンスの様子について書いてみました。 &nb …

【DMP】クッキー連携ってなに

  アドテクに関わる方であれば、必ず耳にするであろう「クッキー連携」をシンプルに説明してみようと思います。 クッキー連携は cookie sync(クッキーシンク、cookie synchronization の略)と呼ばれることも多いです。 Googleは cookie matching …