Treasure Dataの新機能(Data Tank)をAudienceOneのレポート機能で利用した話


Data Tankとは?

Treasure Dataの新機能でTreasure Dataのプラットフォーム上に構築されたデータマートです。
Tableau等のBIツールとの接続を想定されており、AWSでいうところのRedshift的なものだと考えるとわかりやすいかと。
Data TankはPostgresql9.4をベースに拡張にされており、ストアドや9.1から追加されたForeign Data Wrapperも利用可能になっています。

AudienceOneについて

AudienceOneは、いわゆるDMP(Data Management Platform)で、どちらかというと、Public DMPに分類されています。
基本的な機能としては、Webデータの収集や分析、セグメンテーション、外部データ(3rdPartyデータ)との掛け合わせ分析、また、セグメンテーションしたデータをDSPなどの配信システムと連携する、といった機能を備えています。
詳しくはこちらを御覧ください

Data Tankの利用について

AudienceOneでは10/8のアップデートで複数のセグメントの重複率の分析を行うレポートでData Tankを活用しました。
最初に実際のレポートUIを見たほうがわかりやすいと思うので説明すると、
以下のようにベン図を用いて任意のセグメントについての重複率や重複ユーザ数の分析を行うことができます。
データについては大きいものでも数秒で出力することができます。

aone_report_1008

このレポートに使用しているデータは実に単純で、各セグメントA,B,Cに対して集合演算(A∩B、A∩C、B∩C、A∩B∩C)を行っているだけです。

ロジック自体はとても単純なんですが、AudienceOneには全体で4億以上のCookieデータがあり、10万を超えるセグメントがあります。
ユーザ x セグメントで直近1ヶ月を対象にすると、約120億レコードにもなります。
なので、事前にすべて組み合わせの集計をやろうと思ってもなかなか大変です。というより無理でした。。
とはいえ、非同期でやってしまうとスピーディーな分析ができず、PDCAサイクルを高速でまわすことができなくなってしまいます。

アドホックにセグメント間の重複分析できるようにするためにData Tankを利用しました。

システム構成としてはざっくりですが、以下のようになっており、Treasure Data上にあるログデータやAudienceOneで推計しているデモグラフィックデータなどをまとめてHiveQLで中間集計を行い、その結果をData Tankに出力しています。
そしてAudienceOneのコンソールから直接Data Tankに接続してデータを取得しています。

aone_datatank

データ量としては、HiveQLで処理するデータが上記で書いた通り約120億レコードで中間集計を行った結果が1,000万弱のレコード数となっています。
HiveQLの実行からData Tankに入れるまでの処理時間はだいたい1~2時間くらいです。

中間テーブルのデータの持ち方が一番工夫したポイントなので、具体的なテーブルの構成についてはご紹介できませんが、当初はRedshiftでの構築を検討していました。
ところが、ご存知のとおりRedshiftでは使える関数が限られており事前に考えた方法での実現が難しく、ちょうど困っていたところでData Tankを紹介いただいて、今回採用に至りました。

パフォーマンスについては、Data Tankの採用を決める前にちょっとだけやってみましたが、Redshiftと同等、ないしはData Tankのほうが早かったです。
もちろん、データ量やデータの内容、クエリによって全然異なると思いますが。
今回の採用した一番のポイントはPostgresqlの関数がすべて使える、という点だったのでまだちゃんと検証できていないというのが本音です。
個人的にはData Tankを利用することでTreasure Dataのプラットフォームですべて完結できるってのもいいなと思いました。

今後について

現状、Treasure Data+Redshift+Tableauという構成で構築しているものもあるので、
Treasure Data+Data Tank+Tableauとの比較検証もしてみたいと思います。
また、今後も継続してAudienceOneのレポート機能を拡充していくので、うまく活用したいと思っています。
Foreign Data Wrapperも今回利用しなかったので、マスタデータとの突合など機会があれば利用したいと思います。

おまけ

弊社ではエンジニアの募集もしておりますが、学生エンジニアインターンの募集もはじめました。
興味ある方がいればぜひ!
ネット広告業界のプロを目指したい、学生エンジニアインターンWanted!


DACエンジニア採用情報

  関連記事

巨大データベースのスケールアップと引越作業

はじめに ビッグデータ解析部でオーディエンスデータ解析基盤の開発、運用を担当している Mike です。 弊社ではインターネット広告配信ログをはじめとする「ビッグデータ」と呼ぶにふさわしいデータボリュームを扱うオーディエンスデータ解析基盤を構築しています。今秋、そのうちの1構成要素である、データサイズ …

HivemallでMinhash!〜似てる記事を探し出そう。〜

こんにちは。俺やで。 前回の投稿に続き(間が空きましたが)、 ビッグデータに対応したHiveで使える機械学習ライブラリ、 「Hivemall」の使い方、第2弾となります。 今回はMinhashという手法について書きたいと思います。 ※前回 【超入門】Hivemallで機械学習 〜Treasure D …

no image
【動画広告】VASTって何?

こんにちは、FlexOne推進部の近江です。 私は新卒入社2年目でアドサーバーや動画ソリューション(OVP)のサポート、開発を担当しています。 今回は動画広告のプロトコル「VAST」について書かせて頂きます。   ここ数年動画のくるくる詐欺がありましたが、昨年はHulu、ユーチューバー、見 …

アドテク問題(広告表示編)

アドテクエンジニア向けの問題を考えました。 お題は「広告表示」です。 以下お題に沿った「アドタグ」を作成し、広告を表示してみてください。 全部で9問あるので、興味のある人はやってみてください。 難易度は、ちょうどいいくらいです。 全部できた人は、採用担当までご連絡ください。 Q1.バナー広告を表示し …

Safari10(iOS10)のインライン動画再生についてまとめてみた

はじめに Safari10からvideoタグを用いたインライン動画再生ができるようになったので、挙動を調べてみました。 Safari 10.0 検証環境 項目 詳細 開発環境 Xcode8.0 検証端末 iPhone7 Simulator ブラウザ iOS Safari / UIWebView / …

PyStanによるはじめてのマルコフ連鎖モンテカルロ法

はじめに こんにちは。システム開発部の中村です。 社内で行っている『データ解析のための統計モデリング入門』(所謂緑本)の輪読会に参加した所、 大変わかりやすい本だったものの、Macユーザには悲しい事に実装サンプルがWinBUGSだったため、 9章の一般化線形モデルのベイズ推定によるアプローチをPyt …

Google IMA SDK で動画アプリに広告を入れてみた〜iOS編〜

新卒のjotakaです。 スマホアプリに動画広告を出すためのSDKを導入してみたいと思います。 ここでのSDKはアプリへ簡単に機能追加するためのframeworkやlibraryと言う方がわかりやすいかもしれません。 アプリ開発者が動画広告用のSDKを使用するメリットとして、例えば動画広告の仕様であ …

「Ad Tech Power Game」

こんにちは、テクノロジー戦略部の田畑です。 はじめに。 この「アドテクゑびす界」ですが、DAC公式のエンジニアブログです。他の方も色々と技術的なことを書いていますが僕エンジニアでもなんでもありません。コード書けませんし、読めません。 ではなぜそんなやつがここでブログを書いているのか?会社の公式ブログ …

【DMP】クッキー連携ってなに

  アドテクに関わる方であれば、必ず耳にするであろう「クッキー連携」をシンプルに説明してみようと思います。 クッキー連携は cookie sync(クッキーシンク、cookie synchronization の略)と呼ばれることも多いです。 Googleは cookie matching …

【DMP】IDのハッシュってなに

アドテクに関わる方であれば、よく耳にするであろう「ハッシュ」をシンプルに説明してみようと思います。 とはいえ「ハッシュ」は広いので、ここでは「IDのハッシュ」に焦点を当てます。 「ハッシュ/hash(動詞)」はそもそも「細切れにする」というような意味を持ちます。(名詞だと「細切れのもの」) ハッシュ …