Treasure Dataの新機能(Data Tank)をAudienceOneのレポート機能で利用した話


Data Tankとは?

Treasure Dataの新機能でTreasure Dataのプラットフォーム上に構築されたデータマートです。
Tableau等のBIツールとの接続を想定されており、AWSでいうところのRedshift的なものだと考えるとわかりやすいかと。
Data TankはPostgresql9.4をベースに拡張にされており、ストアドや9.1から追加されたForeign Data Wrapperも利用可能になっています。

AudienceOneについて

AudienceOneは、いわゆるDMP(Data Management Platform)で、どちらかというと、Public DMPに分類されています。
基本的な機能としては、Webデータの収集や分析、セグメンテーション、外部データ(3rdPartyデータ)との掛け合わせ分析、また、セグメンテーションしたデータをDSPなどの配信システムと連携する、といった機能を備えています。
詳しくはこちらを御覧ください

Data Tankの利用について

AudienceOneでは10/8のアップデートで複数のセグメントの重複率の分析を行うレポートでData Tankを活用しました。
最初に実際のレポートUIを見たほうがわかりやすいと思うので説明すると、
以下のようにベン図を用いて任意のセグメントについての重複率や重複ユーザ数の分析を行うことができます。
データについては大きいものでも数秒で出力することができます。

aone_report_1008

このレポートに使用しているデータは実に単純で、各セグメントA,B,Cに対して集合演算(A∩B、A∩C、B∩C、A∩B∩C)を行っているだけです。

ロジック自体はとても単純なんですが、AudienceOneには全体で4億以上のCookieデータがあり、10万を超えるセグメントがあります。
ユーザ x セグメントで直近1ヶ月を対象にすると、約120億レコードにもなります。
なので、事前にすべて組み合わせの集計をやろうと思ってもなかなか大変です。というより無理でした。。
とはいえ、非同期でやってしまうとスピーディーな分析ができず、PDCAサイクルを高速でまわすことができなくなってしまいます。

アドホックにセグメント間の重複分析できるようにするためにData Tankを利用しました。

システム構成としてはざっくりですが、以下のようになっており、Treasure Data上にあるログデータやAudienceOneで推計しているデモグラフィックデータなどをまとめてHiveQLで中間集計を行い、その結果をData Tankに出力しています。
そしてAudienceOneのコンソールから直接Data Tankに接続してデータを取得しています。

aone_datatank

データ量としては、HiveQLで処理するデータが上記で書いた通り約120億レコードで中間集計を行った結果が1,000万弱のレコード数となっています。
HiveQLの実行からData Tankに入れるまでの処理時間はだいたい1~2時間くらいです。

中間テーブルのデータの持ち方が一番工夫したポイントなので、具体的なテーブルの構成についてはご紹介できませんが、当初はRedshiftでの構築を検討していました。
ところが、ご存知のとおりRedshiftでは使える関数が限られており事前に考えた方法での実現が難しく、ちょうど困っていたところでData Tankを紹介いただいて、今回採用に至りました。

パフォーマンスについては、Data Tankの採用を決める前にちょっとだけやってみましたが、Redshiftと同等、ないしはData Tankのほうが早かったです。
もちろん、データ量やデータの内容、クエリによって全然異なると思いますが。
今回の採用した一番のポイントはPostgresqlの関数がすべて使える、という点だったのでまだちゃんと検証できていないというのが本音です。
個人的にはData Tankを利用することでTreasure Dataのプラットフォームですべて完結できるってのもいいなと思いました。

今後について

現状、Treasure Data+Redshift+Tableauという構成で構築しているものもあるので、
Treasure Data+Data Tank+Tableauとの比較検証もしてみたいと思います。
また、今後も継続してAudienceOneのレポート機能を拡充していくので、うまく活用したいと思っています。
Foreign Data Wrapperも今回利用しなかったので、マスタデータとの突合など機会があれば利用したいと思います。

おまけ

弊社ではエンジニアの募集もしておりますが、学生エンジニアインターンの募集もはじめました。
興味ある方がいればぜひ!
ネット広告業界のプロを目指したい、学生エンジニアインターンWanted!


DACエンジニア採用情報

  関連記事

no image
Treasure Dataで長期間の集計

プラットフォーム・ワン T氏です。プラットフォーム・ワンでは、DSPのMarketOneとSSPのYIELD ONE提供しています。 MarketOneやYIELD ONEのログを調査する場合にTreasure Dataを使うことがあります。Treasure Dataでは大量のデータに対してHive …

【DMP】クッキー連携ってなに

  アドテクに関わる方であれば、必ず耳にするであろう「クッキー連携」をシンプルに説明してみようと思います。 クッキー連携は cookie sync(クッキーシンク、cookie synchronization の略)と呼ばれることも多いです。 Googleは cookie matching …

HyperLoglogでcount distinctを速くする

こんにちは。俺やで。 HyperLoglogについて書きます。おもしろいです。名前が。 ■1. HyperLoglogとは? count distinctを速くするアルゴリズム 以前、Minhashについて書きました。 (Treasure Dataさんのブログにも載せていただきました。ありがとうござ …

Tableau 9.2で郵便番号の特性を地図で可視化してみる

Tableau 9.2から郵便番号地図が表示可能に 弊社ではデータ分析ツールのTableauを利用しています。オーディエンスデータの重複を分析したり、デモグラフィック属性を表示したりするなどデータの可視化に役立ちますTableauでは9.2から日本の郵便番号を用いて地図を可視化できるようになりました …

fastavroとjqでAVRO形式のファイルからデータを取得しよう

AVRO形式のファイルを取り扱いたい AVROとはApacheプロジェクトのひとつとして開発されているデータ交換形式です。 コンパクトなバイナリで高速なシリアライズ・デシリアライズが行えるため、サーバーログなどに利用されています。 弊社内での一部システムのログデータにも利用されているのですが、専用の …

オトナの常識、消費者プライバシー保護(前編)

どうも、広告技術研究室のダーハラです。    何やってる人? 広告技術研究室の業務は多岐に渡るのですが、僕の仕事は海外のアドテクノロジーの動向や関連する技術環境の変化を調べて、経営陣や開発部隊にフィードバックするといったことを主な業務としています。 とてもやり甲斐のある仕事なのですが、仕事 …

Ad Tech Conference~海外アドテク系カンファレンスに行ってきた②~

はい、テクノロジー戦略部の田畑です。 アドテク系イベントに行ってきた②ということで、前回書ききれなかったところを書きます。   ~前回のおさらい~ 1.11月にNYのアドテク系イベント3つに行ってみた。 2.Fraud、Viewability、Programatic Directがキーワー …

GoogleスプレッドシートからTreasureDataへデータを取り込む

AudienceOneの開発を担当しています。skryoです。 またまたTreasureDataネタですが、今回はGoogleスプレッドシートからGoogleAppsScriptを使ってTreasureDataへデータを取り込む手順を紹介したいと思います。 なぜ? Googleスプレッドシート上でマ …

気象予報士とビッグデータ解析の意外な関係

DACから気象予報士が誕生しました ビッグデータ解析部のMikeです。 2015年1月の気象予報士試験に合格し、めでたく4月からアドテク業界ただ一人(本当?)の気象予報士となりました 。 そんなわけで、今回は気象予報士とビッグデータ解析の関係についてお話したいと思います。 なぜ気象予報士を目指したか …

Safari10(iOS10)のインライン動画再生についてまとめてみた

はじめに Safari10からvideoタグを用いたインライン動画再生ができるようになったので、挙動を調べてみました。 Safari 10.0 検証環境 項目 詳細 開発環境 Xcode8.0 検証端末 iPhone7 Simulator ブラウザ iOS Safari / UIWebView / …