D3.jsとその活用事例について


D3.jsとは?

D3とは「Data Driven Document」の略で、データに基づいてドキュメントを操作するための JavaScript ライブラリです。

ご存知の方も多いと思いますが、ちょっとだけD3.jsの基本的な使い方、そして弊社プラットフォームでの利用についてご紹介したいと思います。

D3.jsの基本的な使い方

D3.jsはHighChartsGoogleChartsのようにぽんっとデータを渡せばいい感じのグラフを出してくれるようなライブラリではありません。
もっと低レイヤーのライブラリで、学習コストはそれなりに高いと思います。
が、覚えるととても便利です。(まだまだ僕も使いきれていませんが)

では、さっそく基本的な使い方です。

データをhtmlとして書き出してみましょう。

var data = [1,2,3,4];
d3.select("body")
    .selectAll("p")
    .data(data)
    .enter()
    .append("p")
    .text(function(d) {return "データ: " + d});

これを実行すると以下のようにhtmlが生成されます。

d3sample1

  • d3.select(“body”).selectAll(“p”)
    まずD3.jsのメソッドでbodyを選択し、HTML内のすべてのpタグを取得しています。
    ※ただし、この時点ではpタグ存在せず、追加するタグになります。
    ※セレクタの使い方はjQueryとほとんど同じです。

  • .data(data).enter()
    データセットをバインドし、enter()メソッドでデータを保存します。

d3.select(“body”).selectAll(“p”).data(data).enter()
まで実行した場合の戻り値を見てみると、

[
    0 : {
        __data__ : 1
    },
    1 : {
        __data__ : 2
    },
...
]

と「__data__」にデータが保存されていることがわかります。

  • .append(“p”).text(function(d) {return “データ: ” + d});
    pタグを挿入し、pタグ内のテキストとして、function(d) {return “データ:” + d}を挿入しています。
    function内のdにはバインドした値が入ってきます。今回は”データ”という文字列を付与してreturnしていますので、
    さきほどの画像のように表示されます。

ヒートマップを作ってみる

基本的な使い方からかなり飛んでいるような気もしますが、D3.jsを使ってヒートマップを作ってみたいと思います。

  • データ

曜日/時間帯ごとのPV数のデータを用意しました。

[
    {
        "week" : "月",
        "time" : 0,
        "pv": 43605
    },
    {
        "week" : "月",
        "time" : 1,
        "pv": 24782
    },....
    {
        "week" : "日",
        "time" : 23,
        "pv": 24782
    }
]
  • コード
var dataset = [{"week" : "月","time" : 0,"pv": 43605}, ...];
// カラースケール作成のためdatasetのmax,min,medianを取得
var max = d3.max(dataset, function(d){ return Number(d.pv) });
var min = d3.min(dataset, function(d){ return Number(d.pv) });
// カラースケールを作成
var colorScale = d3.scale.linear().domain([min, max]).range(["#fefcfc","#f8696b"]);

// ヒートマップのテーブルを追加
var tbl = d3.select("body").append('table');

// 横軸の0~23時の配列を生成
var hours = d3.range(24);

// 生成したtableにtheadを追加
var thead = tbl.append('thead');

// theadに0~23時の横軸を入れる
tbl.append('th');
tbl.selectAll('class')
	.data(hours)
	.enter()
	.append('th')
	.text(function(d){ return d + " 時" });

// 縦軸のデータを生成する(曜日をキーにする)
var weekdata = d3.nest().key(function(d){ return d.week; }).entries(dataset);
// tbodyを生成し、tbodyにtrを追加する
var tbody = tbl.append('tbody');
var tr = tbody.selectAll('tr')
	.data(weekdata)
	.enter()
	.append('tr')
tr.append('th').text(function(d){ return d.key;});

// 実際のデータをtdに入れる
tr.selectAll('td')
	.data(function(d){ return d.values} )
	.enter()
	.append('td')
	// 作成したカラースケールから背景色を設定
	.style("background-color", function(d){ return colorScale(d.pv); })
	// td内に数値を入れる(3桁区切りでカンマを入れる)
	.text(function(d){
		var num = new String(d.pv).replace(/,/g, "");
		while(num != (num = num.replace(/^(-?\d+)(\d{3})/, "$1,$2")));
		return num
	})

これを実行するとこんな感じになります。
d3sample2

まあ、内容はコメントに書いてあるとおりで、割りと簡単に作れます、と言いたかったのです。

活用事例

最後にD3.jsの活用事例について紹介します。

弊社が提供しているAudienceOne®では、今回紹介したD3.jsを使って、オウンドサイトのリーセンシー/フリークエンシー毎のユニークユーザ数をヒートマップを使って直感的に可視化できる機能を提供しています。

AoneCapture

また、今回のサンプルでは実装しませんでしたが、Javascriptのイベントも自由に設定することができるため、ドラッグ操作で任意の範囲選択の数値を出力といったことも分析できます。

気になる方は、ぜひお問い合わせください。AudienceOne®


【2015/08/27 追記】
DAC AD TECH BLOGで、AudienceOne®について詳しく紹介しております。
ぜひご一読ください。顧客を可視化し、データドリブンなマーケティングを支援/「AudienceOne」


DACエンジニア採用情報

  関連記事

gasserverless
GoogleAppsScriptとTreasureData REST APIを使ってサーバレスにTwitterのデータを取得

またまたTreasureDataネタです。 ただ、今回はクエリ系のネタではなく、GoogleAppsScriptとTreasureDataのREST APIを使ってTwitterのデータをTreasureDataに入れてみたので、その方法を紹介したいと思います。 はじめに ログデータだけではなく、公 …

no image
Polymer core-ajax の使い方

Polymerのcore-ajaxの使い方。 まずは、index.html my-topicsというCustom Elementに実際の処理を書く。JSONで、とあるサーバからデータを取得する、という想定。本当はJSONPで取りたかったんだけど、それは次回までの課題で… core-aja …

heatmap
巨大データベースのスケールアップと引越作業

はじめに ビッグデータ解析部でオーディエンスデータ解析基盤の開発、運用を担当している Mike です。 弊社ではインターネット広告配信ログをはじめとする「ビッグデータ」と呼ぶにふさわしいデータボリュームを扱うオーディエンスデータ解析基盤を構築しています。今秋、そのうちの1構成要素である、データサイズ …

4
【未経験からのRuby on Rails – 第4回】Railsアプリケーション開発をしよう! 〜開発の準備編〜

こんにちは。新卒のmatsuariです。 Rubyについてまだまだ知るべきことはたくさんありますが、とにかく早くアプリを作りたい! ということで、今回はアプリ開発の準備に取り掛かっていきます。 Rubyはアプリを作成しながら、同時に学んでいきたいと思います。 Railsアプリケーション開発の準備《 …

スクリーンショット 2015-07-31 16.38.02
【未経験からのRuby on Rails – 第2回】Rubyのプログラムを書いてみる(Mac)

こんにちは。新卒1年目のmatsuariです。 前回はRubyとは何か、簡単にご紹介をしましたが、 今回は実際にRubyファイルを作成して、プログラムを書いてみるところまでご紹介していけたらと思います。 Mac環境のプログラミング初心者向けです。 はじめに、Rubyのプログラムを書くためのファイルを …

logomono-tableau-software-mono
Tableauを利用してMySQLとRedshiftのクロスDBジョインを実現する

はじめに RedshiftやTreasureDataなどのデータマート用のDBにはID単位の解析結果が格納され、ローカルのMySQLにはIDに紐づいた名称マスタが管理されている構成の場合、データマートのクロス集計結果に対してIDに紐づいた名称を付与したいことがあります。 データマート用に用意したDB …

index
Android 非同期処理についてまとめてみた

Androidには、UIに影響を与えないよういくつか非同期処理が用意されています。 今回は非同期処理の代表的な ・Service ・IntentService ・HandlerThread について違いを踏まえながらまとめます! 非同期処理について(http://codezine.jp/articl …

l_077
fastavroとjqでAVRO形式のファイルからデータを取得しよう

AVRO形式のファイルを取り扱いたい AVROとはApacheプロジェクトのひとつとして開発されているデータ交換形式です。 コンパクトなバイナリで高速なシリアライズ・デシリアライズが行えるため、サーバーログなどに利用されています。 弊社内での一部システムのログデータにも利用されているのですが、専用の …

スクリーンショット 2015-07-31 16.41.25
【未経験からのRuby on Rails – 第3回】変数と定数

こんにちは。新卒1年目のmatsuariです。 今回はRubyに限らずプログラミングを学ぶ上で非常に重要となる「変数と定数」について、ご紹介していきます。 変数とは・・・ オブジェクトを一時的に格納しておく箱で、オブジェクトを識別するために利用します。 言葉だけでは理解が難しいかと思いますので、まず …

PPG_anteli-kunatokei_TP_V
Treasure Dataで大規模なマスタデータを扱う際にはtimeカラムインデックスを活用しよう

DACではTreasure Dataを利用して各種データの蓄積や集計を行っています。Treasure Dataは時系列のデータを扱うのに特にすぐれたアーキテクチャなのですが、セグメントIDとユーザーIDの組み合わせといった大量のマスタデータを利用した計算にも利用することもできます。そのような場合にt …